

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
· 1		Attempt any FIVE of the following:	10
1.	(9)	List any four specifications of resistors	2M
	(a) Ans	Specifications of resistors:	<i>2</i> 1 1
	1 111,50	Resistance Value / Resistivity	Anv
		 Tolerance 	four
		Power Rating	specifica
		Thermal Stability	tions
		Maximum operating temperature	¹∕₂ M
		Maximum operating competature	each
	(h)	State the need of filters in a regulated DC nower supply	2M
	(b) Ans	Need of filters.	2111
	1 111.50	The output of a rectifier contains dc component as well as ac	Relevant
		component. The presence of the ac component is undesirable and	need
		must be removed so that pure dc can be obtained. Filter circuits are	2M
		used to remove or minimize this unwanted ac component of the	
		rectifier output and allows only the dc component to reach the load.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER -	2018	EXAN	/INA	TION
SOMMEN -	4010			

Subj	ject: Basio	c Electronics Subject Code: 2	2225]
	(c) Ans.	Define α and β of transistor. α (Alpha) : This is the Common Base dc current gain. It defined as the ratio of collector current (I _C) to emitter current (I _E). $\alpha = \frac{I_C}{I_E}$ β (Beta): This is the Common Emitter dc current gain. It is defined as the ratio of collector current (I _C) to the base current (I _B). $\beta = \frac{I_C}{I_B}$	2N Ea defin n 1	1 ch itio M
	(d) Ans.	Draw the symbol of N-channel and P-channel enhancement type MOSFET. Symbol of N- Channel Enhancement MOSFET: Gate Gate Source Symbol of P- Channel Enhancement MOSFET: Gate Gate Gate Source	2N Eac sym 1N	1 ch bol 1
	(e) Ans.	 List the types of signals. Types of signals: Analog signal Digital signal AC signal DC signal Sinusoidal signal Triangular signal Square signal 	2N Any typ 1M e	1 , 2 es ach

Subject: Basic Electronics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER -	2018	EXAMIN	ATION
	2010		

Subject Code: 22225

	(f)	Draw constructional diagram of niozoologtric transducor	214
	(1)	(Note: Any other suitable diagram shall be considered for awarding	2 1 VI
		(Note: Any other suturble diagram shall be considered for dwarding marks)	
	Ans.	Constructional diagram of piezoelectric transducer:	
		Quartz	
			Diagram
			<i>2M</i>
		Compressed Quartz	
		external force/pressure	
	(g)	State the function of proximity sensors and photodiode.	2M
	Ans.	Functions of Proximity Sensors:	
		1. Detect the presence of an object through change in the current in	
		Its coll.	Annone
		changes in current	Any one function
			1M each
		Function of Photodiode:	
		It converts the light energy into current or voltage in reverse bias	
		condition.	
2.		Attempt any THREE of the following:	12
	(a)	State the advantages of integrated circuits over circuits with	4 M
		discrete components.	
	Ans.	Advantages of Integrated circuits:	
		 I ow weight due to very small size 	Anv A
		• Low power requirement due to lower dimension and lower	Ацу 4 1М
		threshold power requirement.	each
		Low cost due to large-scale production.	
		• High reliability due to the absence of a solder joint.	
		Increased response time and speed.	
		• Easy replacement instead of repairing as it is economical.	
		• Higher yield, because of the batch fabrication.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

Г

Subject: Basi	c Electronics Subject Code: 22	225
(b) Ans.	Define the following terms with respect to rectifier: (i) Ripple factor (ii) Rectification efficiency (η) (iii) Transformer Utilization Factor (TUF) (iv) Peak Inverse Voltage (PIV) (i) Ripple factor: The factor which represents ac component present in the rectifier output, with respect to dc component is called Ripple Factor. OR	4M
	The ratio of r.m.s. value of a.c. component to the d.c. component in the rectifier output is known as ripple factor. Mathematically, $\gamma = \frac{rms \ value \ of \ ac \ component}{dc \ component}$	Each term definiti on 1M
	$\gamma = \frac{rms}{V_{dc}} = \frac{rms}{I_{dc}}$ (ii) Rectification efficiency (η): This is defined as the ratio of dc power delivered to the load to the ac input power from the secondary winding of the transformer. Mathematically,	
	$\eta = \frac{dc \text{ power delivered to the load}}{ac \text{ input power from the transformer secondary}} = \frac{P_{dc}}{P_{ac}}$ (iii) Transformer Utilization Factor (TUF): It is the ratio of dc power delivered to the load and the ac rating of the transformer secondary.	
	$TUF = \frac{dc \text{ power delivered to the load}}{ac \text{ rating of the transformer secondary}} = \frac{P_{dc}}{P_{ac} \text{ (rated)}}$ (iv) Peak Inverse Voltage (PIV): The maximum value of reverse voltage (for the diode in a rectifier) occurring at the peak of the negative cycle of the input cycle is called Peak Inverse Voltage	
(c) Ans.	Draw construction of LED and explain working principle.	4M

MODEL ANSWER

Subject: Basic Electronics

Subject Code:

22225

SUMMER – 2018 EXAMINATION					225	
Subj	ject: Basi	c Electronics		Si	ibject Code: 22	225
		Output Impedance Current Gain	High OR 50 K Ω Less than or equal to 1 OR $\alpha = \frac{I_C}{I}$	$Medium OR 10K \Omega to 50K\OmegaHigh (100)OR\beta = \frac{I_C}{I_B}$	Low OR 50Ω High (100) OR $\gamma = \frac{I_E}{I_B}$	Correct compari son 1M each
		Application	High frequency Circuits	Audio frequency circuits (Amplifiers)	Impedance Matching	
3.		Attempt any TH	REE of the follo	wing:		12 4M
	(a) Ans.	Draw and explai	in the construction	on of N-channel J	JFE1.	4111
		Gate Gate Source Source				
		Construction Details: A JFET consists of a p-type or n-type silicon bar containing two PN junctions at the sides as shown in fig. The bar forms the conducting channel for the charge carriers. If the bar is of p-type, it is called p-channel JFET and if the bar is of n-type, it is called n-channel JFET as shown in fig. The two PN junctions forming diodes are connected internally and a common terminal called gate is taken out. Other terminals are source and drain taken out from the bar as shown in fig.1.Thus a JFET has three terminals such as, gate (G), source (S) and drain (D).				Explana tion 2M

SUMMER -	2018	EXA	MINA	TION

		SUMMER – 2018 EXAMINATION	
Subj	ject: Basi	c Electronics Subject Code: 22	225
	(b)	State any four selection criteria for transducers.	4 M
	Ans.	Selection criteria for transducers are:	
		1. Operating range	
		2. Operating principle	
		3. Sensitivity	Anv
		4 Accuracy	four
		5 Frequency response and resonant frequency	noints
		6 Frrors	$\frac{1}{M}$
		7 Environmental compatibility	each
		8 Usage and ruggedness	cucn
		0. Electrical espect	
		10. Stability and Poliability	
		10. Stability and Kenability	
		12. Static characteristics	
		12. Static characteristics	
	(a)	Determine the value of positioned with the following colour code:	41.4
	(C)	(i) Ded Ded Overge Cold (ii) Presure Plack Plack Silver	4111
	A	(i) Red, Red, Orange, Gold (ii) Brown, Black, Black, Sliver	
	Ans.	(1) Kea, Kea, Orange, Gola	
		Red Red Orange Gold	
		$2 2 x 1000 \pm 5\%$	
		$= 22 \times 1000 \pm 5\%$	Each bit
			2M
		Value of resistor is $22 \text{ K}\Omega + 5\%$ OR $22000\Omega + 5\%$	
		(ii) Brown, Black, Black, Silver	
		Brown Black Black Silver	
		$1 0 x 1 \pm 10\%$	
		$= 10 \text{ x } 1 \pm 10\%$	
		Value of resistor is $10 \Omega \pm 10\%$	

MODEL ANSWER

SUMMER – 2018 EXAMINATION

MODEL ANSWER

SUMMER – 2018 EXAMINATION

MODEL ANSWER

Subject: Basic Electronics

22225

Subject Code:

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

		$V_{GS} = \begin{pmatrix} & & \\$	$\left(1 - \frac{\sqrt{5mA}}{\sqrt{10mA}}\right) X - 6$ $= -1.756V$ $V_{GS(OFF)}$ $= -6V$		V _{GS} calculati on 2M V _P calculati on 1M
	(e)	Compare P-N (i) Symbol (iii) Reverse	junction diode and zen (ii) Dire breakdown (iv) Ap	er diode on the basis of ection of conduction oplication	4M
	Ans.	Parameter Symbol	Zener Diode	PN Diode	Each Point 1M
		Direction of conduction	It conducts in both directions.	It conducts only in one direction.	
		Reverse breakdown	It has quite sharp reverse breakdown.	It has no sharp reverse breakdown.	
		Application	Commonly used for voltage regulation	commonly used for rectification	
5.	(a)	Attempt any T Calculate peak waveforms sho	TWO of the following: k-to-peak amplitude, fown in Fig.1. v $f_{ms} \rightarrow f_{t} \rightarrow f_{t}$ Fig. 1	requency and wavelength of 10 V 10 V 20 ms	12 6M
	Ans.				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

	For sine waveform:	
	1. Peak to peak amplitude $=10 \text{ V}$	
	2. Frequency= $1/T = 1/(2.5 \text{ms}) = 400 \text{ Hz}$	
	3. wavelength $\lambda = Vc/f = (3*10^8)/400 = 750000 \text{ m}$	Each
	For square waveform:	calculati
	1. Peak to peak amplitude $=20 \text{ V}$	on 1M
	2. Frequency= $1/T = 1/(20 \text{ ms}) = 50 \text{ Hz}$	
	3. wavelength $\lambda = Vc/f = (3*10^8)/50 = 6000000 \text{ m}$	
(b)	In CE configuration, if $\beta = 100$, leakage current $I_{CEO} = 150 \mu A$. If	6M
	the base current is 0.2 mA, calculate the value of $I_{\rm C}$, $I_{\rm E}$ and α .	
	(Note: Marks should be given for correct formula)	
Ans.	Given data: $\beta = 100$, $I_{CEO} = 150 \mu A$. I_B is 0.2mA,	
	To find $I_{\rm C}$, $I_{\rm E}$ and α .	2M for
	Solution :-	correct
	We know	calculati
	1) $\alpha = \beta / (\beta + 1)$	on of
	= 100/(100+1)=0.99	each
		paramet
	2) I_C is given as,	er
	$I_{C} = \beta * I_{B} + I_{CEO}$	(Formul
	$=(100*0.2*10^{-3})+150*10^{-6}=20.150$ mA.	a 1M,
		Calculat
	3) I_E is given as,	ion -1M)
	$I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$	
 (c)	Identify the circuit shown in Fig. 2 and explain working with	6M
	input-output waveforms for a sinusoidal input.	
	X X	
	Vout	
	V _{in}	
	*	
	Fig. 2	
Ans.	The given circuit is Bridge rectifier- (with diodes numbered)	

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

	Determine:	
	(i) AC drain resistance	
	(ii) Transconductance	
	(iii) Amplification factor	
	(Note: Formula should be given marks)	
Ans.		
	(i) AC drain resistance is given as, $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$ at V_{GS} constant	
	$\frac{15V-7V}{10.25-10\text{mA}} = \frac{8V}{0.25\text{mA}} = 32\text{K}\Omega$	2M for each (1M
	(ii) Transconductance gm is given as , $g_m = \frac{\Delta I_D}{\Delta V_{GS}}$, V_{DS} at constant	for Formula, 1M for
	$\frac{10.25\text{mA} - 9.65\text{mA}}{0 - (-0.2\text{V})} = \frac{0.6\text{mA}}{0.2\text{V}} = 3\text{m Mho}$	calculati on)
	(iii) Amplification factor μ	
	$\mu = r_d \ge g_m = 32 \text{ K}\Omega \ge 3m \text{ Mho} = 96$	
(b)	Observe the given frequency response of RC coupled amplifier in Fig. 3 Calculate: (i) Lower cut-off frequency (F _L) (ii) Higher cut-off frequency (F _H) (iii) Bandwidth (BW)	6 M
	15	
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	in more thank the state of the	
	3 /	
	₩ × × × × × × × × × × × × × × × × × × ×	
	H001 - 01 00 - (Hz)	
	Fig. 3	
Ans.		

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic	e Electronics Subject Code:	22225
	As maximum gain is 15 dB, 3 dB down gain is 12 dB. So, (i) The lower cut-off frequency F_L = 1KHz (ii) Higher cut-off frequency F_H =100 MHz (iii) Bandwidth (BW) = F_H - F_L =(100000 -1)KHz = 99999 KHz	2M for each proper answer
(c) Ans.	Identify active and passive transducer from the following transducers: (i) Capacitive transducer (ii) Photovoltic cells (iii) Piezoelectric transducer (iv) Strain gauge (v) Thermocouple (vi) Thermisters (i) Capacitive transducer-passive transducer (ii) Photovoltaic cells- active transducer (iii) Piezoelectric transducer-active transducer. (iv) Strain gauge-passive transducer (v) Thermocouple- active transducer (v) Thermocouple- active transducer	g 6M 1M each for right answer

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
•			
1.		Attempt any FIVE of the following:	10
	(a)	Draw the symbol of inductor and capacitor. State the	2M
		unit of inductor and capacitor.	
	Ans.	Symbol of Inductor:	Each
			symbol ¹ /2
		of the or of the	M
		Symbol of Capacitor:	Each
			Unit ½ M
		\downarrow OR \downarrow OR \downarrow OR \downarrow	
		Unit of Inductance : Henry OR H	
		Unit of capacitance : farad OR F	
		1	

Г

WINTER – 2018 EXAMINATION MODEL ANSWER

Sub	ject: BAS	IC ELECTRONICS Subject Co	ode:	22225
	(b) Ans	 State the need of filters. Define filter. Need: In dc power supplies, the output of a rectifier contains dc component as well as ac component. The presence of the ac component is undesirable and must be removed so that pure dc can be obtained. Thus filters circuits are required. Filters: Filters are electronic circuits (consisting of inductors and capacitors) which remove or minimize unwanted ac component of the rectifier output and allows only the dc component to reach the load. 	2 Need Def	M d IM initio n !M
	(c) Ans	Define α and β of transistor. α (Alpha) : This is the Common Base dc current gain. It defined as the ratio of collector current (Ic) to emitter current (IE). $\alpha = \frac{I_C}{I_E}$ β (Beta): This is the Common Emitter dc current gain. It is defined as the ratio of collector current (Ic) to the base current (IB). $\beta = \frac{I_C}{I_B}$	2 Ea defin	M ach nition !M
	(d) Ans	Define amplification factor and trans-conductance of JFET. Amplification factor: Amplification factor (μ) of a JFET is the ratio of change in drain voltage to gate voltage keeping constant drain current. This indicates how much more control the gate voltage has over drain current compared to the drain voltage. $\mu = \frac{\Delta V_{DS}}{\Delta V_{GS}}$ keeping I _D constant.	2 Ea defin	M ach nition IM

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22

22225

	Transconductance:	
	The transconductance g_m is the change in the drain current	
	for a given change in gate to source voltage with constant	
	drain to source voltage.	
	ΔΙD	
	g_{m} =keeping V _{DS} constant.	
	ΔV_{GS}	
(e)	State the two advantages and disadvantages of	2M
(C)	integrated circuits	
Ans	Advantages of Integrated circuits:	
1 1115	• Small in size due to the reduced device dimension	Each
	 Low weight due to very small size 	advantag
	• Low power requirement due to lower dimension and	a and
	Low power requirement due to lower dimension and	e unu disadvant
	lower tilleshold power requirement.	aisaavani
	• Low cost due to large-scale production.	age - 1/2/1/1
	• High reliability due to the absence of a solder joint.	
	• Increased speed.	
	• Easy replacement instead of repairing as it is	
	economical.	
	• Higher yield, because of the batch fabrication.	
	Disadvantages of Integrated circuits:	
	• IC resistors have a limited range.	
	• Generally inductors (L) cannot be formed using IC	
	 ICs are delicate and cannot withstand rough handling 	
	 Limited amount of power handling 	
	 Lack of flexibility 	
	 Higher value capacitors cannot be fabricated 	
(f)	Define transducer and name two passive transducers.	2M
Ans	Transducer is a device that converts one form of energy	
	into another form of energy.	Definitio
	A transducer is a device which converts a physical quantity	n
	such as temperature pressure displacement force etc into	1M
	equivalent electrical quantity either voltage or current	11/1
	equivalent electrical quality ender voluge of carrent.	
	Examples of Passive transducers:	Each
	• RTD	Example
	 Inductive transducers 	1/2M
		/ 2171

(g)

Ans

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

22225 Subject Code: • Capacitive transducers • LVDT • LDR • Strain gauge • Thermisters State seebeck and Peltier effect. **2M** Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of Each which, one junction is subjected to high temperature and Definitio another is subjected to low temperature then e.m.f is n induced and it is proportional to the temperature difference *1M* between two junctions. Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to flow through, then one junction will be heated and other will become cool. OR It is the presence of heating of one junction and cooling of

		the other when electric current is maintained in a circuit of material consisting of two dissimilar conductors.	
2.		Attempt any THREE:	12
	(a)	Determine the value of capacitance with the following	4 M
		colour code.	
		(i) Orange, Orange, Blue	
		(ii) Yellow, Violet, Yellow	
	Ans.	(i) Orange, Orange, Blue	
		Colour coding:	
		Orange Orange Blue	
			Colour
			coding
			<i>1M</i>
		3 3 6	
		Value of capacitor: $33 \times 10^6 \text{ pF}$	
		$= 33 \times 10^6 \times 10^{-12} F$	
		$= 33 \text{ X} 10^{-6} \text{ F}$	
		$= 33 \mu F$	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

e: 22225

	ii) Yellow, Violet, Yellow	
	Yellow Violet Yellow \downarrow	Correct answer with unit 1M
	Value of capacitor : $47 \times 10^4 \text{ pF}$ = 470KpF OR = $47 \times 10^4 \times 10^{-12} \text{F}$ = $47 \times 10^{-8} \text{F}$ = 0.47 µF	
(b)	Draw the neat sketch of center tap full wave rectifier.	4M
Ans	Draw 1/p and 0/p waveforms. Circuit Diagram	
	$ \bigcirc A.C. \bigvee_{1} \bigcirc 0 \\ Supply \bigvee_{1} \bigcirc 0 \\ \downarrow \\$	Any other relevant circuit Diagram 2M Wavefor ms
	Input and Output Waveforms	2M
	Output voltage	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BA	SIC ELECTRONICS Subject	Code:	22225
(c) Ans	Draw and explain zener diode as a voltage regulator.Zener diode as voltage regulatorA reverse biased Zener diode is used to provide a constate voltage across the load resister R_L . The voltage regulated circuit diagram showing the Zener diode is as given below V_{lage} <	er er er	4M Igram 2M
	Regulation with varying input voltage: (Lin Regulation) As the input voltage increases, the input current (I increases. This increases the current through Zener Diod without affecting the load current (I_L). The increase in inp current will also increase the voltage drop across R_S at keeps V_L as constant. If the input voltage is deceased, the input current also decreases. As a result, the current through zener will also decrease. Hence voltage drop across series resistance will be reduced. Thus V_L and remains constant.	$\begin{array}{c c} \mathbf{E} \mathbf{x} \mathbf{p} \\ \mathbf{E} \mathbf{x} \mathbf{p} \\ \mathbf{ion} \\ \mathbf{s} \\$	olanat v 2M
	Regulation with varying load resistance: (Load Regulation)The variation in the load resistance R_L changes I_L , there changing V_L . When load resistance decreases, the load current increases. This causes zener current to decrease. A a result, the input current and voltage drop across H remains constant. Thus, the load voltage V_L is also ke constant. On the other hand, When load resistance increases, the load current decreases. This causes zene current to increase. This again keeps the input current and voltage drop across R_S constant. Thus, the load voltage V urrent and voltage V urrent and voltage V	by d s ξ_s pt ce er d T_L	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22225

(d) Ans	Describe the working principle of npn transistor with the help of diagram. NPN Transistor: Diagram:	4M
	$\begin{array}{c c} I_{E} & N & P & N \\ \hline R_{E} & E \\ \hline & & & & \\ \hline \\ \hline$	Any other elevant liagram 2M
	Working principle: Above figure shows NPN transistor with forward biased emitter-base junction and reverse biased collector-base junction. The forward bias causes the electrons in the N-type emitter to flow towards the base. This constitutes the emitter current IE. As these electrons flow through the P-type they tend to combined with holes. As the base is likely doped and very thin therefore only a few electrons (2%) combine with holes to constitute base current I _B . The remaining electrons (98%) cross over in to the collector region to constitute collector current Ic. In this way almost the entire emitter current flows in the collector circuit. It is clear that emitter current is sum of collector and base current. $Ir = I_B + I_C$	xplana on 2M

WINTER – 2018 EXAMINATION MODEL ANSWER

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

voltage

22225 Subject Code: When the gate to source voltage (applied by V_{GG})is increased above zero, the reverse bias voltage across gate source junction is increased. The depletion region is widened. This reduces the width of the channel and thus controls the flow of current. The gate source voltage reaches a point where the channel gets completely blocked and the drain current becomes zero is called pinch- off

ns	Parameters	Active	Passive	Any
	XX7 1 *	Transducer	Transducer	Con
	Working Principle	Operate under energy conversion principle	Operate under energy controlling principle	1M
	Example	Thermocouple, Piezoelectric Transducer etc.	Thermistors, Strain Gauges etc.	
	Advantage	Do not require external power supply for its operation	Require external power supply for its operation	
	Application	Used for measurement of Surface roughness in accelerometers and vibration pick ups	Used for measurement of power at high frequency	
(c)	State the diffe	rent types of res	istors. State any four	4
(c)	specifications o	rent types of res f resistors.	istors. State any four	

WINTER – 2018 EXAMINATION MODEL ANSWER

22225 **Subject Code:** Subject: BASIC ELECTRONICS Ans **Different types of Resistors:-**Classific ation 2M Resistor Linear Non-Linear Variable Type Fixed Type -Wire Wound Thermistor Carbon Composition LDR (Light Dependent Potentiometer Thin Film -Trimmers Resistor) -Thick Film Photo Resistor Wire Wound Varistor **Specifications of Resistor:-**Any four • Temperature Coefficient. **Specifica** • Size or value of a resistor tions of • Power Dissipation / wattage resistors • Tolerance 2M• Thermal Stability • Frequency Response. • Power De-rating. • Maximum Temperature. • Maximum Voltage. Explain the working of two stages RC coupled amplifier (**d**) 4Mwith neat circuit diagram. Ans Second stage First stage C1 Coupling Q, 0. ++ network Output AC Diagram Input RLS AC V. 2Msignal Vi \$R₂ signal C. REI

WINTER – 2018 EXAMINATION MODEL ANSWER

Subj	ect: BAS	IC ELECTRONICS Subject Co	ode:	22225
		 Two stages are connected with R & C components so it is called as RC Coupled amplifier. a) Resistor R_{C1}, R₃ & Capacitor C_C form the coupling network. b) R₁, R₂, R₃, R₄ provide voltage divider bias to Q₁ & Q₂. c) R_{C1}& R_{C2} provide V_{CE} to Q₁ & Q₂. d) R_{E1} & R_{E2} provide bias stabilization. 	Wo w app on	rking vith vlicati s 2M
		Applications of RC Coupled Amplifier: Excellent frequency response from 50 Hz to 20 KHz so it is very useful in the initial stage of all public address systems.		
4	(a)	Attempt any THREE: Explain any four selection criteria of transducers for temperature measurement.	4	12 IM
	Ans	 Note: Any other relevant selection criteria shall be considered. 1. Ambient temperature range: It will impact on sensor accuracy as we can easily predict the ambient temperature effect on measurement taken from the sensor. 2. Stability & control precision requirement: If accuracy requirement is far better than 20F, use an RTD and if long term stability is required an RTD is better choice than Thermocouple. 3. Speed of response to temperature change requirement. Spring loaded temperature sensor and stepped thermo wells provide good speed of response. 4. Cost: Measurement failure most often results in production down time costs. 	Any Co sele cri tran 0 1M	four rrect ection teria of nsduc ers each
	(b)	Differentiate between P-N junction diode and zener diode.	4	M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

-

Ans	Sr.No.	PN Junction Diode	Zener Diode	
	1	It is not properly doped to control reverse breakdown.	It is properly doped to control reverse breakdown.	Any four Correct
	2	It conducts only in one direction.	It conducts in both directions.	Comparis on
	3	It is always operated in forward-bias condition.	It is always operated in reverse-bias condition.	1M each
	4	It has no sharp reverse breakdown.	It has quite sharp reverse breakdown.	
	5	It burns immediately, if applied voltage exceeds the breakdown voltage.	It will not burn, but functions properly in breakdown region.	
	6	It is commonly used for rectification purpose.	It cannot be used for rectification, but commonly used for voltage regulation.	
(c)	Draw	DC load line of transis	tor. Explain working of	4 M
(c) Ans	Draw transis	DC load line of transis tor as a switch. point is the operating po	tor. Explain working of int of the transistor $(I_{CQ},$	4M
(c) Ans	Draw transis 1. Q-pe V _{CEQ}) a	DC load line of transis tor as a switch. bint is the operating po it which it is biased.	tor. Explain working of int of the transistor $(I_{CQ},$	4M
(c) Ans	Draw $\begin{bmatrix} 1 \\ transis \\ 1. \\ Q-pe \\ V_{CEQ} \end{bmatrix}$ a 2. The amplify input of	DC load line of transis tor as a switch. oint is the operating po at which it is biased. concept of Q-point is use ving device and hence is co atput characteristics.	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of	4M DC loadline 2M
(c) Ans	Draw $\frac{1}{2}$ transis 1. Q-pe V _{CEQ}) a 2. The amplify input of 3.To op	DC load line of transis tor as a switch. bint is the operating po at which it is biased. concept of Q-point is use ying device and hence is of autput characteristics. berate the BJT at a point s and currents through ext	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide	4M DC loadline 2M
(c) Ans	Draw $\stackrel{\frown}{}$ transis 1. Q-pe V_{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The saturati	DC load line of transis tor as a switch. bint is the operating po at which it is biased. concept of Q-point is use ving device and hence is of utput characteristics. berate the BJT at a point s and currents through ext aw DC load line of a transion current and cutoff volt turation current is the n	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide ternal sources. Insistor we need to find the age.	4M DC loadline 2M Transisto r as a
(c) Ans	Draw transis 1. Q-pe V_{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The sa through	DC load line of transis tor as a switch. bint is the operating point is the operating point which it is biased. concept of Q-point is use ving device and hence is of utput characteristics. berate the BJT at a point is and currents through ext aw DC load line of a transition current and cutoff volt turation current is the n in the transistor and occu	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide ternal sources. Insistor we need to find the age. naximum possible current rs at the point where the	4M DC loadline 2M Transisto r as a switch 2M
(c) Ans	Draw $\stackrel{?}{}$ transis 1. Q-pe V_{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The sa through voltage 5. The	DC load line of transis tor as a switch. bint is the operating point which it is biased. concept of Q-point is use ving device and hence is of utput characteristics. berate the BJT at a point s and currents through ext aw DC load line of a transion current and cutoff volt turation current is the none the transistor and occu- across the collector is min- cutoff voltage is the min-	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide ternal sources. Insistor we need to find the age. naximum possible current rs at the point where the nimum. naximum possible voltage	4M DC loadline 2M Transista r as a switch 2M
(c) Ans	Draw $\stackrel{\frown}{}$ transis 1. Q-pe V _{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The sa through voltage 5. The across t A com	DC load line of transis tor as a switch. bint is the operating point is the operating point is biased. concept of Q-point is use ving device and hence is of autput characteristics. berate the BJT at a point is and currents through ext aw DC load line of a transition current is the non on current and cutoff volt turation current is the non the transistor and occur across the collector is mini- cutoff voltage is the no- he collector and occurs at non emitter amplifier is sl	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide ternal sources. Insistor we need to find the age. Inaximum possible current rs at the point where the nimum. Inaximum possible voltage czero collector current. nown the figure below:	4M DC loadline 2M Transista r as a switch 2M
(c) Ans	Draw $\frac{1}{2}$ transis 1. Q-pe V _{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The sa through voltage 5. The across t A comr	DC load line of transis tor as a switch. bint is the operating point which it is biased. concept of Q-point is use ving device and hence is of utput characteristics. berate the BJT at a point is and currents through ext aw DC load line of a transition current and cutoff volt turation current is the non- the transistor and occur across the collector is mini- cutoff voltage is the mini- he collector and occurs at non emitter amplifier is slow	tor. Explain working of int of the transistor (I_{CQ} , d when transistor act as an operated in active region of it is necessary to provide ternal sources. Insistor we need to find the age. Inaximum possible current rs at the point where the nimum. Inaximum possible voltage czero collector current. Nown the figure below: rcuit,	4M DC loadline 2M Transista r as a switch 2M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22225

WINTER – 2018 EXAMINATION MODEL ANSWER

22225 **Subject Code:** Subject: BASIC ELECTRONICS 1. Transistor in cut- off region is an open switch. Here V_{in} is 0 V. 2. In the cut –off region both the junction of a transistor are reverse biased and very small reverse current flows through the transistors. 3. The voltage drop across the transistor (V_{CE}) is high. Thus, in the cut off region the transistor is equivalent to an open switch as shown in figure. Vcc Ic= IC (sat) ≥R_C SRC $oV_{CE} = 0V$ Transistor in saturation In saturation the transistor is equivalent to a closed switch. When V_{in} is positive a large base current flows and transistor saturates. In the saturation region both the junctions of a transistor are forward biased. The voltage drop across the transistor (VCE) is very small, of the order of 0.2 V to 1V depending on the type of transistor and collector current is very large. Draw the Drain characteristics of JFET showing **(d)** 4Mdifferent operating regions. If drain current is 5mA, $I_{DSS} = 10mA$ & Vas (off) = -6V. Find the value of V_{as} . Note: V_{as} is considered as V_{GS}

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

22225

Subject Code:

WINTER – 2018 EXAMINATION **MODEL ANSWER**

22225 Subject: BASIC ELECTRONICS **Subject Code:** 230v AC C Transformer Rectifier Smoothing Regulator Load Supply Diagram 2M ectified output iltered output Pure dc output Transformer Input Waveform output A typical Regulated Power supply unit consists of the following. Transformer – An input transformer for the stepping down of the 230v AC power supply. Working of each **Rectifier** – A Rectifier circuit to convert the AC block components present in the signal to DC components. 2M**Smoothing** – A filtering circuit to smoothen the variations present in the rectified output. **Regulator** – A voltage regulator circuit in order to control the voltage to a desired output level. Load – The load which uses the pure dc output from the regulated output. Attempt any TWO 12 5 Solve the following: (a) (i) In the waveform shown in fig (1), state its amplitude, **6M** frequency, phase and wavelength. 2 msec Fig. 1

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

Ans	From given figure, 1. Amplitude = Vm = 4V 2. Frequency (f) = $\frac{1}{T}$	Each formula ½M
	$\frac{1}{2 x 10^{-3}}$ =500Hz 3. Phase: =0	Each final answer ½M
	4. Wavelength $\lambda = Vc/f = (3*10 \ 8)/500 = 6 \ x \ 10^5 m$ (ii) Define: amplitude and frequency Amplitude: The maximum value (positive or negative) attained by an alternating quantity is called its amplitude or peak value. The amplitude of an alternating voltage or current is designated by V _m or I _m .	Each definition 1M
	Frequency: The number of cycles that occurs in one second is called the frequency (f) of the alternating quantity. It is measured in cycles/ sec or Hertz(Hz)	
(b)	(i) In the circuit shown in fig (2), a silicon transistor with $\beta = 50$ is used. Take $V_{BE} = 0.7V$. Find Q point value.	6M

WINTER – 2018 EXAMINATION MODEL ANSWER

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

	Collector to emitter voltage, $V_{CE} = V_{CC} \cdot (I_{C} * R_{C})$ $V_{CE} = 12 \cdot (2.5 * 10^{-3} * 2.2 * 10^{3})$ $V_{CE} = 6.5 V$ Q-points are $I_{CEQ} = 2.5 \text{ mA}$ $V_{CEQ} = 6.5 V$ Q-point is located on the D.C. load line as shown in figure. $\int_{0}^{TC} \int_{0}^{(mn)} \int_{0}^{0} \int_{0}^{0}$	
	 (ii) Define operating point of the transistor. Operating point: For proper operation of a transistor, in any application, we set a fix level of certain currents and voltages in a transistor. These values of currents and voltages define the point, at which transistor operates. This point is called operating points or quiscent points or Q points. 	Q point definition 1 M
(c) Ans	In full wave bridge rectifier $V_m = 10V$, $RL = 10K\Omega$. find out V_{DC} , I_{DC} , ripple factor and PIV. In full wave bridge rectifier: 1. $V_{DC} = 2V_m/\pi = 0.637 \text{ W}_m$ Therefore, $V_{DC} = 0.637 \text{ m}$ $V_{DC} = 6.37 \text{ V}$	6M Each formula 1M

22225

Subject Code:

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subj	ject: BAS	IC ELECTRONICS Subjec	t Code:	22225
		2. $I_{DC} = 2I_m / \pi = \frac{2Vm}{\pi * RL}$		
		Therefore,		
		$\mathbf{I}_{\rm DC} = \frac{2 \ x \ 10}{\pi \ x \ 10 \ x \ 10^3}$		
		I _{DC} = 0.636 mA	l j	Each Final
		3. Ripple factor $\sqrt{\frac{I_{rms-1}}{I_{DC}}} = \sqrt{\frac{I_{m/\sqrt{2}} - 1}{I_{DC}}}$		15wer 1/2 M
		$\sqrt{\frac{V_m / R_{Lx\sqrt{2}-1}}{I_{DC}}}$		
		7.07 x 10 ⁻⁴		
		Therefore, Ripple factor = 0.331		
		4. PIV = Vm		
		Therefore, PIV= 10 V		
6	(a)	Attempt any TWO: Explain working principle of N-channel depletion ty MOSFET with construction diagram. Compa depletion type MOSEET & ophoncomout ty	vpe are	12 6M
	Ans	MOSFET.	,he	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

22225

Subject Code:

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

Sr. No.	Depletion type MOSFET	Enhancement type MOSFET	Comparis
1	Gate(G)	Gate(G)	on Any four points 2M
	Source(S) N-Channel	Source(S) N- Channel	
	P- Drain(D) Gate(G) Vc Source(S)	Drain(D)	
	Channel	_{Source(S)} P- Channel	
2	An insulating oxide layer is present between gate and channel.	An insulating oxide layer is present between gate and substrate.	
3	N or P type channel is present.	N or P type channel is not present. At a time of operation, induced channel is created.	
	For N channel V_{GS} = negative (for depletion mode) V_{GS} = positive (for enhancement mode)	For N channel $V_{GS =}$ only positive	
5	For N-channel, If V_{GS} is more negative, drain current decreases more	For N-channel, If V_{GS} is more positive, drain current increases more	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subj	ect: BAS	IC EL	ECTRONICS	;		Subject Co	ode:	22225
	(b)	Diffe (i) In (ii) O (iii) C (iv) V (v) Pl (vi) A	rentiate CE, C put resistance utput resistar Current gain Voltage gain hase shift betw Applications	CB, CC, w.r.	t. to nd output		6	M
	7 1115	Sr.	Parameter	СВ	CE	CC	E	ach nt 1M
		1	Input resistance	Very low (20Ω)	Low(1K Ω)	High (500K Ω)	pou	
		2	Output resistance	Very high $(1M \Omega)$	High(40K Ω)	$\frac{\text{Low}(50)}{\Omega}$		
		3	Current gain	Less than unity	High (20 to few hundred)	High (20 to few hundred)		
		4	Voltage gain	Medium	Medium	Less than unity		
		5	Phase shift between input and output	0	180°	0		
		6	Application s	As pre- amplifier	As Audio amplifier	For impedance matching		
	(c)	List	four types of	electrical p	ressure trai	nsducers and	6	M
		descr Note: <i>each</i>	ibe one applic : ¹ /2M may be electrical pres	cation of eac granted for sure transdu	h one. stating the d cer without d	application of lescription.		
	Ans	Type 1.Stra 2.Pote 3.Piez 4. Re 5. Ca	s of electrical ain gauge press entiometer pre- zoelectric press luctance pressu pacitive pressu	pressure transduce soure transduce soure transduce ore transduce ore transduce	ers cers ers rs rs		Any Type	four 28 2M

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

installed here. When the resistance of all four resistor is exactly equal the current flow through each leg is equal. In this condition, the bridge is balanced. However, if one of

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

WINTER - 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

In

it

22225 **Subject Code:** is filtered by another capacitor C2. In further the output of the transistor T1 is amplified by the transistor T2 and at the resistor R4, the amplified signal is produced. The R3 resistor is used for the necessary bias for the transistor T2. The output of the second transistor T2 is filtered with the capacitor C3 and it is connected to the speakers. 4. Reluctance pressure transducers Measurement of fluid pressure in bourdon tube: Free end Cord Bourdo inding Pressure LVDT this the. the bourdon tube act as primary transducer and LVDT which follows the output of bourdon a secondary transducer. The bourdon tube act as tube senses the pressure when liquid enters into it, it will bend depending upon the pressure of the fluid and converts displacement. This set up is used into a for measurement of pressure which is converted into electrical signal by LVDT. 5. Capacitive pressure transducers Measurement of pressure in pipe Voltage

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22225

In this arrangement, in place of movable plate, diaphragm
is used, which expands and contracts due to change in
pressure. The diaphragm plate acts as a movable plate of a
capacitor. A fixed plate is placed near the diaphragm.
These plates form a parallel plate capacitor which is
connected as one of the arms of a bridge. Any change in
pressure causes a change in distance between the
diaphragm and fixed plate, which is unbalances the bridge.
The voltage output of the bridge corresponds to the
pressure applied to the diaphragm plate.

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

tified)

Subject Name: BASIC ELECTRONICS

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

No Q. Scheme 1 (A) Attempt any FIVE of the following: 10- Total Marks 1 (A) Define resistor and draw symbol of variable resistor. 2M Ans Resistor: A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. Definition: 1M Symbol of variable resistor: Julian Julian (b) State need of regulated power supply. 2M	Q.	Sub	Answers	Marking
N. N. Image: Alternation of the following: Ima	No	Q.		Scheme
1 (A) Attempt any FIVE of the following: 10- Total Marks (a) Define resistor and draw symbol of variable resistor. 2M Ans Resistor: A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. Definition: 1M Symbol of variable resistor: Junction Marks (b) State need of regulated power supply. 2M	•	N.		
Image: Marks Marks (a) Define resistor and draw symbol of variable resistor. 2M Ans Resistor: A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. Definition: 1M Symbol of variable resistor: Juncols Juncols Juncols (b) State need of regulated power supply. 2M	1	(A)	Attempt any FIVE of the following:	10- Total
(a) Define resistor and draw symbol of variable resistor. 2M Ans Resistor: A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. Definition: 1M Symbol of variable resistor: Symbol of variable resistor: Image: Comparison of the problem of the				Marks
Ans Resistor: Definition: : A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. IM Symbol of variable resistor: Symbol of variable resistor: IM 		(a)	Define resistor and draw symbol of variable resistor.	2M
: A resistor is an electrical component that limits or regulates the flow of electrical current in an electronic circuit. 1M Symbol of variable resistor: Symbol of variable resistor: 1M (b) State need of regulated power supply. 2M		Ans	Resistor:	Definition:
In an electronic circuit. Symbol of variable resistor: Symbol : 1N Symbol of variable resistor: Image: Circuit of the symbol of variable resistor of variable resistor of the symbol of variable resistor of the symbol of variable resistor of variable		:	A resistor is an electrical component that limits or regulates the flow of electrical current	1M
Symbol of variable resistor: Image: symbol of variable resistor:			in an electronic circuit.	Symbol : 1M
Image: Weight of the set			Symbol of variable resistor:	
(b) State need of regulated power supply. 2M				
		(b)	State need of regulated power supply.	2M

WINTER-19 EXAMINATION

Subject Name: BASIC ELECTRONICS

Subject Code:

22225

Model Answer

Ans :	A regulated power supply is used to ensure that the output remains constant even if the input changes. But sometimes main supply voltage, load, and surrounding temperature keep changing and altering the component parameters and hence changing the output voltage. Output voltage changes are undesirable. Hence the regulated power supply is needed that will accept an AC input and give a constant DC output.	Need : 2M
(c)	List specification of BJT.	2M
Ans :	 The bipolar junction transistor (BJT) has small signal current gain, α (h_{fb}). Maximum collector current Ic (max). Maximum collector to emitter voltage, V_{CE (max)}. Collector to emitter breakdown voltage, BV_{CBO}. Collector cut off current, I_{CEO}. Maximum collector dissipation, P_D. Collector saturation voltage, VCE (sat). Collector to emitter cut off voltage, VCEO. Base emitter saturation voltage, VBE (sat). 	Any four : 2M
(d)	State advantages of MOSFET.	2M
Ans :	 Advantages of MOSFET MOSFETs provide greater efficiency while operating at lower voltages. Absence of gate current results in high input impedance. High switching speed. They operate at lower power and draws no current. They have high drain resistance due to lower resistance of channel. They are easy to manufacture. They are portable. 	Any four : 2M
e)	Give different types of IC.	2M
Ans :	 Analog IC Digital IC Thin and thick film ICs Monolithic ICs 	Types : 2M (Any two)

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

f)	State selection criteria of transducer.	2M
Ans	• Operating Principle : The transducers are selected on the basis of operating	Any four :
:	principle it may be resistive, inductive, capacitive, optical etc.	2M
	• Operating range : The range of transducer should be appropriate for measurement to get a good resolution.	
	Accuracy : The accuracy should be as high as possible or as per the measurement	
	 Range : The transducer can give good result within its specified range, so select transducer as per the operating range. 	
	• Sensitivity : The transducer should be more sensitive to produce the output or sensitivity should be as per requirement.	
	• Loading effect : The transducer's input impedance should be high and output impedance should be low to avoid loading effect.	
	• Errors : The error produced by the transducer should be low as possible.	
	• Environmental compatibility : The transducer should maintain input and output	
	characteristic for the selected environmental condition.	
g)	Define Analog Transducer and give examples of it (any two).	2M
Ans	Analog Transducer: An analog transducer is a device that converts the input signal into a	Definition
:	continuous DC signal of voltage or current.	1M
	Examples:	Examples (any two)
	Strain gauge	1M
	• L.V.D.T	
	Thermocouple	
	Thermistor	

Q. No	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

		Marks
a)	State different types of electrical signal and draw all types of waveforms.	4M
Ans	Types of electrical signals	Types : 1N
:	1) Sine wave 2) Triangular wave	Each
	3) Square wave	1M
	Waveforms	
	Sine wave	
	Amplitude -V	
	Triangular wave	
	Amplitude ->	
	Square wave	
	+V -V -V	
b)	Define BIV THE rinnle factor efficiency of rectifier	4M

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	Peak Inverse Voltage (PIV):	Each
:	The maximum value of reverse voltage (for the diade in a rectifier) occurring at the peak	definition :
	of the negative cycle of the input cycle is called Peak Inverse Voltage	
	Transformer Utilization Factor (TUF):	
	It is the ratio of dc power delivered to the load and the ac rating of the transformer secondary.	
	Ripple factor:	
	The factor which represents ac component present in the rectifier output, with respect to dc component is called Ripple Factor. OR The ratio of r.m.s. value of a.c. component to the d.c. component in the rectifier output is known as ripple factor.	
	Efficiency of rectifier :	
	This is defined as the ratio of dc power delivered to the load to the ac input power from the secondary winding of the transformer.	
c)	Draw VI characteristics of PN junction diode and explain it.	4M
Ans	V-I characteristics of PN junction diode:	Diagram :
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward	Diagram : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias	Diagram : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias *knee" +V	Diagram : 2M Explanation : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias *knee" +V Reverse Voltage +V Forward Voltage 0.3v Germanium	Diagram : 2M Explanation : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias [*] knee [*] [*] knee [*] knee [*] [*] knee [*] knee [*] knee [*] knee [*] kne	Diagram : 2M Explanation : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias -V Voltage Voltage -V Voltage -V Tener Breakdown voltage -V Forward Voltage 0.3v Germanium 0.7v Silicon Reverse Bias -I (µA) Reverse Current	Diagram : 2M Explanation : 2M
Ans :	V-I characteristics of PN junction diode: +I (mA) Forward Current Forward Bias Reverse Breakdown Voltage -V Reverse Voltage -Zener" Breakdown or Avalanche Region Reverse Bias -I (µA) Reverse Current Reverse Current Reverse Current Reverse Current Reverse Current Reverse Current Reverse Current	Diagram : 2M Explanation : 2M

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

Subject Name: BASIC ELECTRONICS

LONG CO

دلأثاد

MAHARASHT (Autonomous)

junction diode At this point, a The forward v is called cut-in The cut-in volt Reverse Bias: Due to therma These minorit	e starts allowing large a small increase in vo oltage at which the s voltage. age for silicon diode al energy in crystal m y carriers are the ele	e electric current throu Itage increases the ele Silicon diode starts allow is approximately 0.7 v inority carriers are pro ectrons and holes pusl	gh it. ctric current rapidly wing large electric c olts. duced. hed towards P-N ju	urrent nction	
 by the negativ Due to the menor Amperence current. When the revince ases drass Diode breakde breakdown. 	e terminal and posit ovement of minority range (for silicon) erse voltage is incre tically is called as rev own occurs by two	ive terminal, respective carriers, a very little . This current is calle eased beyond the limit verse breakdown voltag mechanisms: Avalancl	ely. current flows, whic ed as reverse satu t and the reverse co ge. he breakdown and	h is in ration urrent Zener	
Compare CB, CE and	CC configuration of I	BJT.		4M An	/I ny four
Compare CB, CE and Factor	CC configuration of I	SJT. CE	CC	4N An pir	A ny four nts : 4M
Compare CB, CE and Factor Input impedance	CC configuration of I CB Low or 50Ω	CE Medium OR 600 Ω to 4K Ω	CC High OR 1M Ω	4M An pir	ብ ny four nts : 4M
Compare CB, CE and Factor Input impedance Output impedance	CC configuration of I CB Low or 50Ω High OR 50 K Ω	CE Medium OR 600 Ω to 4K Ω Medium OR 10K Ω to 50K Ω	CC High OR 1M Ω Low OR 50 Ω	4M An pir	ብ ny four nts : 4M
Compare CB, CE and Factor Input impedance Output impedance Curent gain	CC configuration of I CB Low or 50Ω High OR 50 K Ω Less than or equal to 1	CE Medium OR 600 Ω to 4K Ω Medium OR 10K Ω to 50K Ω High (100)	CC High OR 1M Ω Low OR 50 Ω High (100)	4M An pir	ብ ny four nts : 4M
Compare CB, CE and Factor Input impedance Output impedance Curent gain Voltage gain	CC configuration of I CB Low or 50Ω High OR 50 K Ω Less than or equal to 1 High	CE Medium OR 600 Ω to 4K Ω Medium OR 10K Ω to 50K Ω High (100) High	CC High OR 1M Ω Low OR 50 Ω High (100) Less than unit	4M An pir	ለ ny four nts : 4M
Compare CB, CE and Factor Input impedance Output impedance Curent gain Voltage gain Power gain	CC configuration of I CB Low or 50Ω High OR 50 K Ω Less than or equal to 1 High Moderate	SJT. CE Medium OR 600 Ω to 4K Ω Medium OR 10K Ω to 50K Ω High (100) High High	CC High OR 1M Ω Low OR 50 Ω High (100) Less than unit Moderate	4M An pir	A ny four nts : 4M

WINTER-19 EXAMINATION

Subject Name: BASIC ELECTRONICS

Subject Code:

22225

Model Answer

Q. No	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Sketch N-Channel MOSFET and describe its working.	4M
	Ans :	Note: N channel Depletion MOSFET also can be consider. Sketch N-Channel MOSFET:	Sketch-2M

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	and current to voltage source. A = V/r + V + B Figure A represents a practical voltage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while figure B represents a practical outgage source in series with the internal resistance r while the inter	
	Therefore, for any practical voltage source, if the ideal voltage be V and internal resistance I (i.e. $\frac{V}{r}$) with the internal resistance(r) in parallel with the current source as shown.	
d	Draw circuit diagram of single stage RC coupled CE amplifier and describe with the help of input and output waveform.	4M

WINTER-19 EXAMINATION

Subject Code:

22225

Subject Name: BASIC ELECTRONICS

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

			1M
Q. No	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	Describe LVDT with labelled diagram.	4M
	Ans :	$\begin{array}{c} Core \\ \hline \\ Arm \\ \hline \\ Displacement \\ \hline \\ Displacement \\ \hline \\ Output \\ voltage \\ Vd (VS1 - VS2) \\ \hline \\ Construction of LDVT \end{array}$	Diagram-2M Description- 2M
		Working: LVDT is the example of inductive transducer, in LVDT any physical displacement of the core cause the voltage of any secondary winding to increase while simultaneously reducing the voltage in the other secondary winding. The difference of the two voltages	

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

(c)	Draw O/P characteristics of CB configuration and explain its working.	4M
Ans :	Saturation region 50 1 1 1 1 1 1 1 1	Characteristi cs-2M Working-2M
	In common base configuration, emitter is the input terminal, collector is the output terminal and base terminal is connected as a common terminal for both input and output. The base-emitter junction is forward biased and collector-base junction is reverse biased. Keeping emitter current constant, increase Vcb from zero onward, therefore collector current will be approximately constant as shown.	
	With the increase in emitter current, collector current is also increased as shown above.	
	Depending on the variation of Vcb, ic also varies, based on this the curve is divided into three region i.e. saturation, active and cut off region.	
	Saturation region: In this region Vcb is negative for NPN transistor.	
	A small change in Vcb result in a large value of current	
	Active region: In this region, the collector current is constant and is equal to the emitter current.	
	Cut off region: In this region, a small collector current flows called leakage current when	

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

Ans	Since	1M
•	AC drain resistance is given as, $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$ at V_{GS} constant	
	Transconductance gm is given as , $g_m = \frac{\Delta I_D}{\Delta V_{GS}}$, V_{DS} at constant	1M
	Amplification factor µ	
	$\mu = \mathbf{r}_{\mathrm{d}} \ge g_m$	
	$\mu = \frac{\Delta V_{DS}}{\Delta I_D} X \frac{\Delta I_D}{\Delta V_{GS}}$	2M
	$\mu = \frac{\Delta V_{DS}}{\Delta V_{GS}}$	
(e)	Sketch the constructional diagram of LED and describe its working.	4M
Ans	Constructional Diagram:	Diagram-2M
:	Light Metal film Emission Metal film	Working-2M
	Connection Connection Diffused	
	+ + + + + + + + + + + + + + + + + + +	
	Charge carrier	
	Gold film cathode connection	
	Directo Ducas	
	• Light Emitting Diode (LED) works only in forward bias condition. When Light	
	Emitting Diode (LED) is forward biased, the free electrons from n-side and the	

holes from p-side are pushed towards the junction.

tified)

Subject Name: BASIC ELECTRONICS

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

		• When free electrons reach the junction, some of the free electrons recombine	
		with the holes in the positive ions. In the similar way, holes from p-side recombine	
		with electrons in the depletion region.	
		• Some free electrons from n-type semiconductor cross the p-n junction and	
		recombines with holes in p-type semiconductor. In the similar way, holes from p-	
		type semiconductor cross the p-n junction and recombines with free electrons in	
		the n-type semiconductor.	
		• Thus, recombination takes place in depletion region as well as in p-type and n-type	
		semiconductor.	
		• The free electrons in the conduction band releases energy in the form of light	
		before they recombine with holes in the valence band.	
		• In silicon and germanium diodes, most of the energy is released in the form of	
		heat and emitted light is too small.	
		However, in materials like gallium arsenide and gallium phosphide the emitted	
		photons have sufficient energy to produce intense visible light.	
Q.	Sub	Answers	Marking
Q. No	Sub Q. N.	Answers	Marking Scheme
Q. No	Sub Q. N.	Answers	Marking Scheme
Q. No 5.	Sub Q. N.	Answers Attempt any TWO of the following:	Marking Scheme 12- Total Marks
Q. No 5.	Sub Q. N.	Answers Attempt any TWO of the following:	Marking Scheme 12- Total Marks
Q. No 5.	Sub Q. N.	Answers Attempt any TWO of the following: State the applications and specification of	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N. a)	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N.	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N.	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor (iii) Inductor	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N.	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor (iii) Inductor	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N.	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor (iii) Inductor	Marking Scheme 12- Total Marks 6M
Q. No	Sub Q. N. a)	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor (iii) Inductor Application of resistor:	Marking Scheme 12- Total Marks 6M 1 M each for
Q. No	Sub Q. N. a) Ans :	Answers Attempt any TWO of the following: State the applications and specification of (i) Resistor (ii) Capacitor (iii) Inductor Application of resistor:	Marking Scheme 12- Total Marks 6M 1 M each for applications

tified)

Subject Name: BASIC ELECTRONICS

A 10188 00

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

```
22225
```

Model Answer

1.Resistors are used in high frequency instrument.	of
2.Resistor is used in power control circuit.	resistor,capa
3.It is used in DC power supplies.	inductor
4.Resistors are used in filter circuit networks.	(Any correct
5.It is used in amplifiers, oscillators, telecommunication and digital multimeter.	2
6.It is used in wave generators.	applications-
Applications of capacitor:	
1.Use for capacitors is energy storage.	1 M each for
2.Additional uses include power conditioning, signal coupling or decoupling, electronic	of
noise filtering, and remote sensing.	resistor,capa
Applications of Inductors:	citor and inductor
1.Filters	(Any correct
2.Sensors	spcifications-
Specifications of Resistor:	
1.Temperature Coefficient.	
2.Size or value of a resistor	
3.Power Dissipation / wattage	
4.Tolerance	
5.Thermal Stability	
6.Frequency Response.	
7.Power De-rating.	
8.Maximum Temperature.	
9.Maximum Voltage.	
Capacitor specifications:	
1.Capacitance value	

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	2.Tolerance	
	3.Working voltage	
	4.Dielectric	
	5.Working temperature	
	6.Temperature coefficient	
	Inductor Specification:	
	1.DC Resistance (DCR)	
	2.Maximum DC Current	
	3.Electromagnetic Interference (EMI)	
	4.Magnetic Saturation Flux Density	
	5.Curie Temperature	
b)	Describe how transistor can be used as a switch and draw waveforms.	6M
Ans :		2M for diagram 2M – Explanation and 2M for waveforms
	a)when both junctions are forward bias ,it works in saturation region & act as closed switch.	
	b)when both junctions are reverse biased ,it works in cutoff region & act as open switch.	
	c)If input is not given to base ,transistor remains off.diode will be off.IC=0,Acts as open switch.	
	d)when input is applied to base above 0.7V ,transistor becomes ON,Diode is ON. IC starts flowing ,Transistor acts as close switch.	

WINTER-19 EXAMINATION

Subject Code:

22225

Subject Name: BASIC ELECTRONICS

Model Answer

	Vin Vin PB e Vat	
	$-V_{1}$ t_{2} t_{2} t_{2} t_{2} t_{2} t_{2} t_{2} t_{3} t_{4} t_{2} t_{4} t_{2} t_{4} t_{2} t_{4} t_{4} t_{2} t_{4} $t_{$	
	Waveform:	
	Vin	
	+ Vmax	
	Te	
	and the second sec	
	Re=Ic(max)	
	10% Icemut	
	12 To	
	Torp Torp	
c)	Draw the block diagram of regulated power supply, explain function of each block and	6M
	draw waveforms of each stage.	
Ans :	The block diagram of a Regulated Power supply unit is as shown below	2M for blo diagram
		2M for explanation

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

Q. No	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	With the help of N-channel JFET describe the effect of input voltage VGS on output current ID.	6M
	Ans :	Working of N channel FET:	2 M for diagram and 4M for explanation

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	 When a voltage is applied between the drain and source with a DC supply (VDD), the electrons flows from source to drain through narrow channel existing between the depletion regions. This constitutes drain current, ID. The value of drain current is maximum when the external voltage applied between gate and source OV. When the gate to source voltage (applied by VGG) becomes negative,, the reverse bias voltage across gate source junction is increased. The depletion region is widened. This reduces the width of the channel and thus controls the flow of current. The gate source voltage reaches a point where the channel gets completely blocked and the drain current becomes zero is called pinch- off voltage. 	
b)	Draw frequency response of RC coupled two stage amplifier. Write formula to calculate bandwidth and state any two methods to improve bandwidth.	6M
Ans :	Frequency response of RC coupled two stage amplifier:	3M for frequency response of RC coupled two stage RC coupled amplifier

WINTER-19 EXAMINATION

Subject Code:

22225

Subject Name: BASIC ELECTRONICS

Subject Name: BASIC ELECTRONICS

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	 charge and discharge to input capacitance as required. By doing so the effective source capacitance is reduced, enabling the overall bandwidth of the circuit to be increased. i) Compare Active and Passive transducer 					6M	
c)							
	2) Analog and digital transducer.						
	ii) Differentiate following transducer in active and nassive						
	1) Charles and a						
	 Strain gauge Photovoltaic cell 						
	3) Thermocouple						
	4) Thermistor.						
Ans :	Sr. No.	Parameters	Active Transduc	er	Passive Transducer	2M for correct	
	1	Working Principle	Operate unde conversion princip	er energy le.	Operate under energy controlling principle.	compariso point of	
	2	Example	Thermocouple, Pie Transducer etc.	zoelectric	Thermistors, Strain Gauges etc.	Active and passive	
	3	Advantage	Do not require external power supply for its operation.		Require external power supply for its operation.	Transduce 2M for	
	4	Application	Used for measurement of Surface roughness in accelerometers and vibration pick ups.		Used for measurement of Power at high frequency.	comparise point of Analog ar Digital	
	Analog Transducers Digital Transducers						
	1.Outp nature	out of these transdu	cers are analog in	1.Output of these transducers are in the form of pulses		½ M each correct identifica	
	2.Conv Outpu	vert the input quant t	ity in analog	2.Convert the input quantity in digital output		n	

Subject Name: BASIC ELECTRONICS

WINTER-19 EXAMINATION

Subject Code:

22225

Model Answer

	3.e.g. Strain gauge,Potentiometer	3.e.g. Rotary encoder	
		<u> </u>	
	1) Strain gauge:-Passive Transducer		
	2) Photovoltaic cell:-Active Transducer		
	3) Thermocouple :-Active Transducer		
	4) Thermistor:-Passive Transducer		

24